Abstract

The significance of angiogenesis in cancer biology and therapy is well established. In this study, we used the prototypical RIP-Tag model of multistage pancreatic islet tumorigenesis to show that the nuclear receptor COUP-TFII is essential to regulate the balance between pro- and anti-angiogenic molecules that influence the angiogenic switch in cancer. Conditional ablation of COUP-TFII in the tumor microenvironment severely compromised neoangiogenesis and lymphangiogenesis during pancreatic tumor progression and metastasis. We found that COUP-TFII plays a cell-autonomous role in endothelial cells to control blood vessel sprouting by regulating cell proliferation and migration. Mechanistic investigations revealed that COUP-TFII suppressed vascular endothelial growth factor (VEGF)/VEGF receptor-2 (VEGFR-2) signaling by transcriptionally repressing the expression of VEGFR-1, thereby curtailing a central angiogenic driver of vascular growth. Taken together, our results implicate COUP-TFII as a critical factor in tumor angiogenesis through regulation of VEGF/VEGFR-2 signaling, suggesting COUP-TFII as a candidate target for antiangiogenic therapy.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call