Abstract
TP53 tumor suppressor is frequently altered in lethal, castration-resistant prostate cancer (CRPC). However, to date there are no effective treatments that specifically target TP53 alterations. Using transcriptomic and metabolomic analyses, we have shown here that TP53-altered prostate cancer exhibits an increased dependency on asparagine (Asn) and overexpresses Asn synthetase (ASNS), the enzyme catalyzing the synthesis of Asn. Mechanistically, the loss or mutation of TP53 transcriptionally activated ASNS expression, directly and via mTORC1-mediated ATF4 induction, driving de novo Asn biosynthesis to support CRPC growth. TP53-altered CRPC cells were sensitive to Asn restriction by knockdown of ASNS or L-asparaginase treatment to deplete the intracellular and extracellular sources of Asn, respectively, and cell viability was rescued by Asn addition. Notably, pharmacological inhibition of intracellular Asn biosynthesis using a glutaminase inhibitor and depletion of extracellular Asn with L-asparaginase significantly reduced Asn production and effectively impaired CRPC growth. This study highlights the significance of ASNS-mediated metabolic adaptation as a synthetic vulnerability in CRPC with TP53 alterations, providing a rationale for targeting Asn production to treat these lethal prostate cancers. Significance: TP53-mutated castration-resistant prostate cancer is dependent on asparagine biosynthesis due to upregulation of ASNS and can be therapeutically targeted by approaches that deplete intracellular and extracellular asparagine.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.