Abstract

Pyocyanin (PCN, 1-hydroxy-5-methyl-phenazine) is one of the most essential virulence factors of Pseudomonas aeruginosa (PA) to cause various cytotoxic effects in long-term lung infectious diseases, however the early effect of this bacterial toxin during PA infection and subsequent autonomous immune response in host cells have not been fully understood yet. Our results display that early onset of PCN stimulates Pseudomonas aeruginosa PAO1 adhesion and invasion in A549 cells via ROS production. Non-histone nuclear protein HMGN2 is found to be involved in the regulation of PCN-induced oxidative stress by promoting intracellular ROS clearance. Mechanistically, HMGN2 facilitates nuclear translocation of transcription factor Nrf2 upon PCN stimulation and in turn elevates antioxidant gene expression. We also found that actin cytoskeleton dynamics is targeted by ROS, which is to be exploited by PAO1 for host cell internalization. HMGN2 regulates actin skeleton rearrangement in both PCN-dependent and independent manners and specifically attenuates PCN-mediated PAO1 infection via ROS elimination. These results uncover a novel link between nuclear protein HMGN2 and Nrf2-mediated cellular redox circumstance and suggest roles of HMGN2 in autonomous immune response to PA infection.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.