Abstract

Up-regulation of adhesion molecules such as vascular cell adhesion molecule-1 (VCAM-1) and intercellular adhesion molecule-1 (ICAM-1) by the HIV-1 transactivator of transcription (Tat) in activated microglia and astrocytes may play a pivotal role during the development of AIDS-related encephalitis and dementia. Previous studies demonstrated that HIV-1 Tat-induced up-regulation of adhesion molecules was mediated by reactive oxygen species (ROS), although the mechanisms underlying HIV-1 Tat-induced ROS generation are unknown. In this study, we examined the possible role of NADPH oxidase in HIV-1 Tat-induced up-regulation of adhesion molecules in astroglioma cell lines. HIV-1 Tat-induced up-regulation of VCAM-1/ICAM-1 and subsequent increased adhesion of monocytes to astrocytes were blocked by a general NADPH oxidase inhibitor, diphenylene iodonium, and a specific inhibitor of NADPH oxidase assembly, 9R3A-gp91ds. Nox2 knockdown using small interfering RNA (siRNA) inhibited HIV-1 Tat-induced up-regulation of adhesion molecules and subsequent increased adhesion of monocytes to astrocytes. Nox2 siRNA blocked HIV-1 Tat-induced ROS production, increase in NADPH oxidase activity, and Rac1 activation. Furthermore, Nox2 siRNA decreased HIV-1 Tat-induced NF-κB activation as well as activation of MAP kinases including ERK, JNK, and p38. These data indicate that Nox2-based NADPH oxidase is responsible for HIV-1 Tat-induced generation of ROS and plays an important role in the up-regulation of adhesion molecules such as VCAM-1/ICAM-1 and subsequent increased adhesion of monocytes to astrocytes and serves as a novel target for HIV-1 Tat-mediated neurological diseases.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.