Abstract
AbstractThe mechanical release of III‐nitride devices using h‐BN is a promising approach for heterogeneous integration. Upscaling this technology for industrial level requires solutions that allow a simple pick‐and‐place technique of selected devices for integration while preserving device performance. An advance that satisfies both of these requirements is demonstrated in this work. It is based on a lateral control of the h‐BN quality, using patterned sapphire with a SiO2 mask, to achieve localized van der Waals epitaxy of high‐quality GaN based device structures. After process fabrication, the devices can be individually picked and placed on a foreign substrate without the need for a dicing step. In addition, this approach could reduce delamination of h‐BN on large diameter substrates because each h‐BN region is smaller, with independent device structures. Discrete InGaN LEDs on h‐BN are grown and fabricated on 2 in. patterned sapphire using a SiO2 mask. A set of devices are selectively released and transferred to flexible aluminum tape. The transferred LEDs exhibit blue light emission around 435 nm. The approach presented here is scalable on any wafer size, can be applied to other types of nitride‐based devices, and can be compatible with commercial pick‐and‐place handlers for mass production.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.