Abstract
Resolution of (R)- and (S)-dropropizine which is an antitussive and central sedative therapeutic agent in high optical and chemical yields was achieved by lipases of Pseudomonas cepacia supported on ceramic particles (lipase PS-C) and on diatomite (lipase PS-D) with oxime esters in organic solvents. The influence of several factors (lipase source, structural variations in oxime esters, the amount of lipase and its recyclability) on the enantioselectivity have been investigated. Different properties were used to describe the solvents, namely the hydrophobicity (quantified by log P) and the dielectic constant (epsilon). This enzymatic acylation using oxime esters was significant as only (S)-dropropizine and (R)-dropropizine monoacetate was obtained. (R)-Dropropizine monoacetate was chemically hydrolyzed to obtain (R)-dropropizine. The highest enantioselectivity was observed when O-acetyl benzophenone oxime was used. This enzymatic resolution provides a versatile method for getting the pure enantiomers of dropropizine by effectively optimizing the various reaction parameters.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.