Abstract

A hallmark of type 2 diabetes is impaired insulin receptor (IR) signaling that results in dysregulation of glucose homeostasis. Understanding the molecular origins and progression of diabetes and developing therapeutics depend on experimental models of hyperglycemia, hyperinsulinemia, and insulin resistance. We present a novel monoclonal antibody, IRAB-B, that is a specific, potent IR antagonist that creates rapid and long-lasting insulin resistance. IRAB-B binds to the IR with nanomolar affinity and in the presence of insulin efficiently blocks receptor phosphorylation within minutes and is sustained for at least 3 days in vitro. We further confirm that IRAB-B antagonizes downstream signaling and metabolic function. In mice, a single dose of IRAB-B induces rapid onset of hyperglycemia within 6 h, and severe hyperglycemia persists for 2 weeks. IRAB-B hyperglycemia is normalized in mice treated with exendin-4, suggesting that this model can be effectively treated with a GLP-1 receptor agonist. Finally, a comparison of IRAB-B with the IR antagonist S961 shows distinct antagonism in vitro and in vivo. IRAB-B appears to be a powerful tool to generate both acute and chronic insulin resistance in mammalian models to elucidate diabetic pathogenesis and evaluate therapeutics.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.