Abstract

SUMMARYPrevention or amelioration of declining β cell mass is a potential strategy to cure diabetes. Here, we report the pathways utilized by β cells to robustly replicate in response to acute insulin resistance induced by S961, a pharmacological insulin receptor antagonist. Interestingly, pathways that include CENP-A and the transcription factor E2F1 that are independent of insulin signaling and its substrates appeared to mediate S961-induced β cell multiplication. Consistently, pharmacological inhibition of E2F1 blocks β-cell proliferation in S961-injected mice. Serum from S961-treated mice recapitulates replication of β cells in mouse and human islets in an E2F1-dependent manner. Co-culture of islets with adipocytes isolated from S961-treated mice enables β cells to duplicate, while E2F1 inhibition limits their growth even in the presence of adipocytes. These data suggest insulin resistance-induced proliferative signals from adipocytes activate E2F1, a potential therapeutic target, to promote β cell compensation.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.