Abstract

The field of biofabrication imposes stringent requirements on the polymerization activity and biosafety of photopolymeric hydrogel systems. In this investigation, we designed and synthesized four hemicyanine dyes with a D-π-A structure specifically tailored for biofabrication purposes. These novel dyes, incorporating carbazole (CZ), triphenylamine (TPA), anthracene (AN), and benzodithiophene (BDT) as electron donors, along with heterocyclic salt (IN) as electron acceptors, were prepared using a straightforward synthesis method. The absorption maxima of ANIN, CZIN, and TPAIN exceeded 500 nm, rendering them suitable co-initiators for the free radical photopolymerization of acrylates under green-red light exposure facilitated by light-emitting diodes (LEDs) and the co-initiator iodonium salt (ION). Notably, CZIN and TPAIN, due to their robust dye absorption and efficient electron transfer to ION, functioned as high-performance photosensitizers. Meanwhile, BDTIN, with its strong and broad absorption range (400-600 nm), enhanced the accuracy of visible light photopolymerization. These dyes exhibit characteristics such as facile synthesis, heightened photo stability, and non-toxicity and also demonstrate the ability to discern the alkalinity of a solution to some extent. Furthermore, we explored the application of these hemicyanine dyes in 3D printing, showing potential to enhance printing resolution in DLP 3D printing (digital light process 3D printing).

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call