Abstract

BackgroundOne-third of breast cancers display amplifications of the ERBB2 gene encoding the HER2 kinase receptor. Trastuzumab, a humanized antibody directed against an epitope on subdomain IV of the extracellular domain of HER2 is used for therapy of HER2-overexpressing mammary tumors. However, many tumors are either natively resistant or acquire resistance against Trastuzumab. Antibodies directed to different epitopes on the extracellular domain of HER2 are promising candidates for replacement or combinatorial therapy. For example, Pertuzumab that binds to subdomain II of HER2 extracellular domain and inhibits receptor dimerization is under clinical trial. Alternative antibodies directed to novel HER2 epitopes may serve as additional tools for breast cancer therapy. Our aim was to generate novel anti-HER2 monoclonal antibodies inhibiting the growth of breast cancer cells, either alone or in combination with tumor necrosis factor-α (TNF-α).MethodsMice were immunized against SK-BR-3 cells and recombinant HER2 extracellular domain protein to produce monoclonal antibodies. Anti-HER2 antibodies were characterized with breast cancer cell lines using immunofluorescence, flow cytometry, immunoprecipitation, western blot techniques. Antibody epitopes were localized using plasmids encoding recombinant HER2 protein variants. Antibodies, either alone or in combination with TNF-α, were tested for their effects on breast cancer cell proliferation.ResultsWe produced five new anti-HER2 monoclonal antibodies, all directed against conformational epitope or epitopes restricted to the native form of the extracellular domain. When tested alone, some antibodies inhibited modestly but significantly the growth of SK-BR-3, BT-474 and MDA-MB-361 cells displaying ERBB2 amplification. They had no detectable effect on MCF-7 and T47D cells lacking ERBB2 amplification. When tested in combination with TNF-α, antibodies acted synergistically on SK-BR-3 cells, but antagonistically on BT-474 cells. A representative anti-HER2 antibody inhibited Akt and ERK1/2 phosphorylation leading to cyclin D1 accumulation and growth arrest in SK-BR-3 cells, independently from TNF-α.ConclusionsNovel antibodies against extracellular domain of HER2 may serve as potent anti-cancer bioactive molecules. Cell-dependent synergy and antagonism between anti-HER2 antibodies and TNF-α provide evidence for a complex interplay between HER2 and TNF-α signaling pathways. Such complexity may drastically affect the outcome of HER2-directed therapeutic interventions.

Highlights

  • One-third of breast cancers display amplifications of the ERBB2 gene encoding the Human epidermal growth factor receptor 2 (HER2) kinase receptor

  • Reagents A disulfide-linked homodimer of histidine-tagged extracellular domain of HER2 fused to human Immunoglobulin G1 isotype (IgG1) Fc domain (HER2 ECD), a similar construct based on Epidermal growth factor receptor (EGFR) extracellular domain (EGFR ECD), and IgG1 isotype control antibody were from R&D Systems (MN, USA)

  • Antibodies directed to ECD epitope(s) different from other anti-HER2 therapeutic antibodies may serve as new analytical tools to study the structural organization of HER2 at the cell surface that may be present as monomers, homodimers and heterodimers depending on cell type and extracellular environment such as the availability of ligands that activate heterodimer partners of HER2

Read more

Summary

Introduction

One-third of breast cancers display amplifications of the ERBB2 gene encoding the HER2 kinase receptor. Trastuzumab, a humanized antibody directed against an epitope on subdomain IV of the extracellular domain of HER2 is used for therapy of HER2-overexpressing mammary tumors. Antibodies directed to different epitopes on the extracellular domain of HER2 are promising candidates for replacement or combinatorial therapy. Alternative antibodies directed to novel HER2 epitopes may serve as additional tools for breast cancer therapy. Our aim was to generate novel anti-HER2 monoclonal antibodies inhibiting the growth of breast cancer cells, either alone or in combination with tumor necrosis factor-α (TNF-α). 25-30% of breast cancers display HER2 overexpression [4]. ERBB2 gene amplification that was discovered in the early 1980s is the main cause of HER2 overexpression [5]. ErbB family receptors are activated by homodimerization or heterodimerization. HER2 is activated either by ligand-independent homodimerization when it is overexpressed, or by heterodimerization with a ligand-dependent ErbB/HER member, in particular with ErbB3/HER3 [6]

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call