Abstract
Novel 3D-printed buoyant structures can be applied in various environmental processes because of their considerable advantages. Microalgae cultivation in photobioreactors, directly supplemented by industrial CO2, enables environmental pollution mitigation/cleanup and sustainable energy production. However, in photobioreactor systems, biofilm formation due to gas bubbling decreases microalgal productivity. Therefore, in this study, we aimed to develop a novel 3D-printed buoyant structure to suppress biofilm formation. The 10 mm-sized spherical buoyant structure reduced the height and area of the biofilm by 58.3% and 82.5%, respectively. The structure decreased space where bubble burst occurred and controlled the bubble size, reducing the overall biomass loss by 58.7%. It did not reduce photobioreactor performance noticeably during semi-continuous cultivation, indicating the possibility of long-term applicability. In large-scale outdoor microalgae cultivation using flue gas CO2, the buoyant structure improved the cell density and biodiesel production potential without contamination. This study provides a promising strategy to contribute to biological CO2 mitigation through the utilization of flue gas CO2 for enhanced microalgal production, paving the way for energy and environmental sustainability.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have