Abstract

Abstract Microalgae are used to produce renewable biofuels and high-value components and in bioremediation and CO2 sequestration tasks. These increasing applications, in conjunction with a desirable constant large-scale productivity, motivate the development and application of practical controllers. This paper addresses the application of robust control schemes for microalgae cultivation in continuous photobioreactors. Due to the model uncertainties and external perturbations, robust control designs are required to guarantee the desired microalgae productivity. Furthermore, simple controller designs are desirable for practical implementation purposes. Therefore, two robust control designs are applied and evaluated in this paper for two relevant case studies of microalgae cultivation in photobioreactors. The first control design is based on an enhanced simple-input output model with uncertain estimation. The second control design is the robust nonlinear model predictive control considering different uncertain scenarios. Numerical simulations of two case studies aimed at lipid production and CO2 capture under different conditions are presented to evaluate the robust closed-loop performance.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.