Abstract

A novel cyclodextrin-contained copolymer poly(AAc-co-SA-AC-co-allyl-β-CD) was synthesized based on the method of redox radical polymerization. Fourier transform infrared spectroscopy (FTIR) and proton nuclear magnetic resonance (1H NMR) spectra were used to study the structure of the obtained copolymer. The molecular weight of the copolymer was studied by gel permeation chromatography (GPC). The polymeric nanoparticles (NPs) were fabricated by a solvent evaporation method. The morphology and particle size distribution of the cargo-free NPs were investigated with transmission electron microscope (TEM), atomic force microscope (AFM), and laser particle analyzer, respectively. Curcumin (Cur) was selected as a model drug and encapsulated into the above NPs. The distribution of Cur in the drug-loaded NPs was analyzed by the method of differential scanning calorimetry (DSC) and X-ray diffraction (XRD). Moreover, the release profiles of Cur from Cur-loaded NPs were studied in pH 6.8 and 7.4 buffers. The results of FTIR and 1H NMR spectra confirmed the successful synthesis of poly(AAc-co-SA-AC-co-allyl-β-CD). GPC curve proved that the molecular weight of the copolymer was more than 60 kDa. TEM and AFM images illustrated that the cargo-free NPs were in spherical shape with a diameter about 40 nm. XRD patterns and DSC curves indicated that most of Cur distributed in the Cur-loaded NPs with amorphous state. Importantly, the medicated NPs showed sustained release characteristics toward Cur.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call