Abstract

Fat grafting is a promising modality for soft-tissue augmentation/reconstruction. However, grafted fat tissue is not initially perfused and relies on plasmatic diffusion from the recipient bed until revascularization occurs. The authors evaluated the therapeutic effects of normobaric hyperoxygenation for enhancing fat graft retention. Aspirated human fat tissue was cultured under tissue hypoxia (1% oxygen), normoxia (6%), and hyperoxia (20%) levels, and evaluated for adipocyte viability. Inguinal fat pads were autografted under mouse scalps (n=36), and mice were housed in either 20% (control) or 60% (normobaric hyperoxygenation) atmospheric oxygen for the first 3 days, and then returned to normoxia. Samples harvested at 0, 1, 2, 4, 8, and 12 weeks were analyzed immunohistochemically for adipocyte viability and regeneration. Organ culture adipocytes died more quickly under lower oxygen tensions; thus, hyperoxygenation of recipient tissues may delay adipocyte death after fat grafting. Autografted mouse adipose tissue underwent dynamic remodeling, from ischemic degeneration to partial regeneration, over 12 weeks. Normobaric hyperoxygenation grafted samples showed significantly larger survival zones and engraftment scores (calculated using sample weight and adipocyte viability) at 1 and 12 weeks, respectively, than control samples. In addition, adipocyte regeneration (number of perilipin-positive preadipocytes), which peaked at 4 weeks, was significantly increased in normobaric hyperoxygenation samples. The normobaric hyperoxygenation protocol using 60% oxygen can be safely applied to enhance adipocyte survival, regeneration, and final engraftment after fat grafting.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.