Abstract

Autologous fat is an ideal material for augmentation in plastic surgery because of its minimal tissue reaction and easy availability, but its long-term graft survival is somewhat unpredictable. This study was conducted to determine how fat grafts get their vascular supply from the recipient bed and why they keep reducing in volume and weight. Experimental study using animal models. The expression of vascular endothelial growth factor (VEGF) in grafted fat tissue was examined by using immunohistochemical staining, and apoptotic cell death in the grafted fat was studied by using terminal deoxynucleotidyl transferase (TdT)-mediated deoxy-uridine triphosphate (dUTP)-biotin nick end-labeling method. Twenty-five Wistar rats were used as models of free fat grafts. Fat tissue taken from inguinal fat pads was grafted to the back skin with an 18-gauge needle injection. The weight of the injected fat was significantly reduced on the 180th day compared with the original weight (32% +/- 10%). VEGF+ cells were observed in fibrous connective tissue of the grafts on days 7 and 30 but not after day 90. Apoptotic cells were also observed on days 7 and 30. Angiogenic factors including VEGF started to revascularize the graft around day 7, and the extent of the vasculature was not reduced after the revascularization. In addition to necrosis in the graft's early stages, apoptosis induced by many factors in the graft's environment is also, at least in part, a cause of long-term volume reduction of the fat graft. Thus clinical application of angiogenic factors such as VEGF to fat grafts and control of apoptosis may contribute to improvements in fat-grafting techniques.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.