Abstract

For Kolsky bar testing beyond strain-rates of 10,000/s, it is useful to employ bars with diameters of only a few millimeters or less. Furthermore, very small (sub-millimeter) systems are compatible with micron-sized specimens, to be used, for example, for the determination of mesoscale properties. However, at these sizes, traditional strain-gage measurements of the longitudinal waves within the bars become impractical. In this paper we describe the application of optical measurement techniques to two Kolsky bars, with 3.2 and 1.6 mm diameters. A transverse displacement interferometer is used to measure the displacement of the mid-point of the incident bar and provide measurements of the incident and reflected pulses. Similarly, a normal displacement interferometer is used to measure the displacement of the free-end of the transmitter bar and provide a measurement of the transmitted pulse. The new methods are used to characterize the behavior of 6061-T6 aluminum at rates greater than 100,000/s. The feasibility of application to smaller bars is also discussed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.