Abstract

The use of optical measuring techniques for small diameter Kolsky bar experiments is discussed. The goal is to develop methods that can eliminate the need for more commonly used strain gages which become impractical as bar sizes decrease. The basic approach taken here is to adapt interferometer-based methods, used commonly in pressure-shear plate impact experiments, to high-rate Kolsky bar experiments. A Normal Displacement Interferometer (NDI) is used to measure the motion of the free end of the transmitter bar and provide a measurement of the transmitted pulse. Similarly, the incident and reflected pulses are measured with a Transverse Displacement Interferometer (TDI) utilizing a diffraction grating at the midpoint of the incident bar. Both techniques are applied to 1.59 mm diameter steel pressure bars. In the case of the transmitter bar, measurements are also made with the traditional strain gage instrumentation and comparisons between the two are made. The incident bar measurements made via TDI are validated with a simple bar impact against a single incident bar, i.e., without a specimen or transmitter bar. The possible application of these methods to smaller systems is also discussed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.