Abstract

High frequency microwave electromagnetic radiation from mobile phones and other modern devices has the potential to damage eye tissues, but its effect on the lens epithelium is unknown at present. The objective of this study was to investigate the non-thermal effects of high frequency microwave electromagnetic radiation (1.1GHz, 2.22 mW) on the eye lens epithelium in situ. Bovine lenses were incubated in organ culture at 35°C for 10-15 days. A novel computer-controlled microwave source was used to investigate the effects of microwave radiation on the lenses. 58 lenses were used in this study. The lenses were divided into four groups: (1) Control lenses incubated in organ culture for 10 to15 days. (2) Electromagnetic radiation exposure group treated with 1.1 GHz, 2.22 mW microwave radiation for 90 cycles of 50 minutes irradiation followed by 10 minutes pause and cultured up to 10 days. (3) Electromagnetic radiation exposure group treated as group 2 with 192 cycles of radiation and cultured for 15 days. (4) Lenses exposed to 39.5ºC for 2 hours 3 times with 24 hours interval after each treatment beginning on the second day of the culture and cultured for 11 days. During the culture period, lens optical quality was followed daily by a computer-operated scanning laser beam. At the end of the culture period, control and treated lenses were analyzed morphologically and by assessment of the lens epithelial ATPase activity. Exposure to 1.1 GHz, 2.22 mW microwaves caused a reversible decrease in lens optical quality accompanied by irreversible morphological and biochemical damage to the lens epithelial cell layer. The effect of the electromagnetic radiation on the lens epithelium was remarkably different from those of conductive heat. The results of this investigation showed that electromagnetic fields from microwave radiation have a negative impact on the eye lens. The lens damage by electromagnetic fields was distinctly different from that caused by conductive heat.

Highlights

  • Environmental stress, including electromagnetic radiation, has a negative impact on the lens and is considered a risk factor for cataracts [1,2]

  • In this study we show nonthermal effects of microwaves at the same frequency that is used in cellular phones on the intact lens in organ culture

  • We found that conductive heat altered the optical quality of the lens but in contrast to microwave exposure, damage to lens optical quality by conductive heat was not repaired under the time frame of these experiments

Read more

Summary

Introduction

Environmental stress, including electromagnetic radiation, has a negative impact on the lens and is considered a risk factor for cataracts [1,2]. Microwaves from modern technological devices such as cellular phone transmitters and receivers, radars, radio and TV transmitters and video display terminals are an important part of modern life [3,4]. The ocular lens is exposed to environmental stress throughout the lifetime of an individual [7,8]. Currently very little information is available on the effect of electromagnetic fields from high frequency microwave radiation. With the advent of cellular phones and other devices emitting high frequency electromagnetic radiation, there is a strong rationale for determining the damaging effect of electromagnetic fields generated from high

Objectives
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call