Abstract
Non-singular dislocation continuum theories are studied. A comparison between Peierls–Nabarro dislocations and straight dislocations in strain gradient elasticity is given. The non-singular displacement fields, non-singular stresses, plastic distortions and dislocation core shapes are analysed and compared for the two models. The main conclusion of this study is that due to their characteristic properties, the non-singular displacement fields, non-singular stresses and dislocation core shape of screw and edge dislocations obtained in the framework of strain gradient elasticity are more realistic and physical than the corresponding fields of the Peierls–Nabarro model. Strain gradient elasticity of dislocations is a continuum dislocation theory including a weak non-locality within the dislocation core and predicting the size and shape of the dislocation core. The dislocation core is narrower in the strain gradient elasticity dislocation model than in the Peierls–Nabarro model and more evenly distributed in two dimensions. The present analysis shows that for the modelling of the dislocation core structure the non-singular dislocation fields of strain gradient elasticity are the suitable ones.
Submitted Version (Free)
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.