Abstract

In this Letter, we propose a scheme to achieve a nonreciprocal conventional photon blockade in a nonlinear device consisting of an atom and spinning cavity by manipulating the detuning between the atom and the cavity. We show that the single-photon blockade can be generated by driving the spinning resonator from one side, while photon-induced tunneling is driven by the other side with the same driving strength. This nonreciprocal conventional photon blockade effect originates from the Fizeau-Sagnac drag, which leads to different splitting of the resonance frequencies for the counter-circulating modes. We give four optimal solutions for Fizeau-Sagnac shifts to generate a nonreciprocal conventional photon blockade with the arbitrary detunings between atom and cavity.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.