Abstract
Time and frequency division multiplexing (TFDM) coherent passive optical networks (PONs) are considered as a promising candidate for future optical access networks due to the advantage of high sensitivity, high spectral efficiency, and flexibility. We propose a novel, to our knowledge, bidirectional TFDM 200-Gb/s coherent PON architecture based on the digital subcarrier multiplexing (DSCM) technology. A polarization-insensitive simplified coherent receiver is achieved at the ONU side by Alamouti coding and heterodyne detection. We experimentally demonstrate this bidirectional coherent PON with a 50-Gbaud Alamouti 16 quadrature amplitude modulation (QAM) signal transmitted downstream and a 25-Gbaud dual polarization (DP)-16QAM signal transmitted upstream. By using a single sideband modulated transmitter, only one laser source is required at the optical network unit (ONU) side. The power budgets can reach 30 and 33 dB for the downstream and upstream, respectively, after the 20-km transmission over a standard single-mode fiber (SSMF).
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.