Abstract

We propose a scheme to realize a two-photon Jaynes-Cummings model for a single atom inside an optical cavity. It is shown that the interplay of a laser detuning and atom (cavity) pump (driven) field gives rise to the strong single photon blockade, two-photon bundles, and photon-induced tunneling. With the cavity driven field, strong photon blockade occurs in the weak coupling regime, and switching between single photon blockade and photon-induced tunneling at two-photon resonance are achievable via increasing the driven strength. By turning on the atom pump field, quantum switching between two-photon bundles and photon-induced tunneling at four-photon resonance are realized. More interestingly, the high-quality quantum switching between single photon blockade, two-photon bundles, and photon-induced tunneling at three-photon resonance is achieved with combining the atom pump and cavity driven fields simultaneously. In contrast to the standard two-level Jaynes-Cummings model, our scheme with generating a two-photon (multi-photon) Jaynes-Cummings model reveals a prominent strategy to engineer a series of special nonclassical quantum states, which may pave the way for investigating basic quantum devices to implement in quantum information processing and quantum networks.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call