Abstract

In this paper, we consider a flowshop scheduling problem with sequence-dependent setup times and a bicriteria objective to minimize the work-in-process inventory for the producer and to maximize the customers' service level. The use of a bicriteria objective is motivated by the fact that successful companies in today's environment not only try to minimize their own cost but also try to fulfill their customers' need. Two main approaches, permutation and non-permutation schedules, are considered in finding the optimal schedule for a flowshop. In permutation schedules the sequence of jobs remains the same on all machines whereas in non-permutation schedule, jobs can have different sequence on different machines. A linear mathematical model for solving the non-permutation flowshop is developed to comply with all of the operational constraints commonly encountered in the industry, including dynamic machine availabilities, dynamic job releases, and the possibility of jobs skipping one or more machines, should their operational requirements deem that it was necessary. As the model is shown to be NP-hard, a metasearch heuristic, employing a newly developed concept known as the Tabu search with embedded progressive perturbation (TSEPP) is developed to solve, in particular, industry-size problems efficiently. The effectiveness and efficiency of the search algorithm are assessed by comparing the search algorithmic solutions with that of the optimal solutions obtained from CPLEX in solvable small problem instances.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call