Abstract

The computations reported in this paper demonstrate the remarkable versatility of central schemes as black-box, Jacobian-free solvers for ideal magnetohydrodynamics (MHD) equations. Here we utilize a family of high-resolution, non-oscillatory central schemes for the approximate solution of the one- and two-dimensional MHD equations. We present simulations based on staggered grids of several MHD prototype problems. Solution of one-dimensional shock-tube problems is carried out using second- and third-order central schemes [Numer. Math. 79 (1998) 397; J. Comput. Phys. 87 (2) (1990) 408], and we use the second-order central scheme [SIAM J. Sci Comput. 19 (6) (1998) 1892] which is adapted for the solution of the two-dimensional Kelvin–Helmholtz and Orszag–Tang problems. A qualitative comparison reveals an excellent agreement with previous results based on upwind schemes. Central schemes, however, require little knowledge about the eigenstructure of the problem – in fact, we even avoid an explicit evaluation of the corresponding Jacobians, while at the same time they eliminate the need for dimensional splitting.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.