Abstract
The computations reported in this paper demonstrate the remarkable versatility of central schemes as black-box, Jacobian-free solvers for ideal magnetohydrodynamics (MHD) equations. Here we utilize a family of high-resolution, non-oscillatory central schemes for the approximate solution of the one- and two-dimensional MHD equations. We present simulations based on staggered grids of several MHD prototype problems. Solution of one-dimensional shock-tube problems is carried out using second- and third-order central schemes [Numer. Math. 79 (1998) 397; J. Comput. Phys. 87 (2) (1990) 408], and we use the second-order central scheme [SIAM J. Sci Comput. 19 (6) (1998) 1892] which is adapted for the solution of the two-dimensional Kelvin–Helmholtz and Orszag–Tang problems. A qualitative comparison reveals an excellent agreement with previous results based on upwind schemes. Central schemes, however, require little knowledge about the eigenstructure of the problem – in fact, we even avoid an explicit evaluation of the corresponding Jacobians, while at the same time they eliminate the need for dimensional splitting.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.