Abstract

In the real vision system, lens always inevitably contains nonlinear distortion, which leads to geometric distortion of digital image, so it must be corrected. In this paper, a nonmetric correction algorithm for lens distortion based on entropy measure is proposed. The algorithm uses the imaging characteristics of the space line in the ideal perspective model, and the distortion entropy is defined to measure the degree of lens distortion. For distortion curves with different distribution, the calculation dimension of distortion entropy measure is uniform, which can reduce the influence of curve inhomogeneity. On this basis, the modified distortion entropy measure with normalized weight is put forward to enhance the capability of noise suppression, and the distortion correction performance of the traditional interior point optimization algorithm, basic artificial bee colony (ABC) algorithm, and Gbest-guided artificial bee colony (GABC) algorithm is compared and analyzed. The simulation experiments demonstrate that the correction performance of GABC to optimize the modified distortion entropy measure with normalized weight is best, and it has strong robustness to noise. Finally, the actual image distortion correction examples verify the effectiveness of the proposed algorithm.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.