Abstract
In the past, a beam constraint model (BCM) that captures pertinent geometric nonlinearities associated with large displacements has been proposed for slender spatial beams with uniform and symmetric cross-sections. By providing closed-form parametric relations between the end-loads and end-displacements of the beam, the BCM quantifies the constraint characteristics of the beam in terms of stiffness variations, parasitic error motions, and the cross-axis coupling. This paper presents a nonlinear strain and strain energy formulation for the spatial symmetric beam, based on assumptions that are consistent with the BCM. This strain energy derivation, employing the Principle of Virtual Work, provides a simpler mathematical approach for the analysis of flexure mechanisms with multiple spatial beams. Using this formulation, we obtain the stiffness relations in the transverse bending directions, the constraint relations in the axial and torsional directions, and the overall strain energy expression in terms of the beam end-loads and end-displacements. These expressions, collectively the BCM, are in form that is suitable for the analysis of multi-beam flexure mechanisms.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have