Abstract

In the past, we have introduced the Beam Constraint Model (BCM), which captures pertinent non-linearities to predict the constraint characteristics of a generalized beam flexure in terms of its stiffness and error motions. In this paper, a non-linear strain energy formulation for the beam flexure, consistent with the transverse-direction load-displacement and axial-direction geometric constraint relations in the BCM, is presented. An explicit strain energy expression, in terms of beam end-displacements, that accommodates generalized loading conditions, boundary conditions, initial curvature, and beam shape is derived. Using the Principle of Virtual Work, this strain energy expression for a generalized beam is employed in determining the load-displacement relations, and therefore constraint characteristics, for flexure mechanisms comprising multiple beams. The benefit of this approach is evident in its mathematical efficiency and succinctness, which is to be expected with the use of energy methods. All analytical results are validated to a high degree of accuracy via non-linear Finite Element Analysis. Furthermore, the proposed energy formulation leads to new insights into the nature of the BCM.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.