Abstract
This study investigates the spatial pointing control of a motor-mechanism coupling tank gun. The tank gun control system (TGCS) is driven and stabilised by the motor servo system. However, complicated nonlinearities in the TGCS are inevitable, such as friction, parameter uncertainty, and modelling errors. To solve this problem, the TGCS is regarded as a coupling system composed of mechanical, motor, and control systems. Accordingly, the mechanical and motor models of the marching tank gun are developed first in this paper. The motor-mechanism coupling dynamics model is established based on the principle of equivalent torque. On this basis, a computed torque controller, whose uncertainty was estimated using a radial basis function neural network (RBFNN), is constructed. A modified adaptive algorithm is used to estimate the weights of the RBFNN, and the estimation error of the uncertain observer is compensated by a compensation controller. Simulation results under different conditions validated the effectiveness of the proposed control system, revealing that the proposed control system has good tracking accuracy, strong adaptability, and robustness.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.