Abstract
ABSTRACT Since the trajectory-tracking control performance of multi-joint robot manipulator may be degraded due to modeling errors and external disturbances, this paper designs a new adaptive robot manipulator trajectory tracking control method through improved genetic algorithm and radial basis function neural network sliding mode control (IGA-RBFNNSMC). Firstly, the genetic algorithm (GA) is improved by establishing superior populations centered on individuals with high fitness values and selecting individuals in the superior populations for crossover and variation. Secondly, the improved genetic algorithm (IGA) is used for the optimization of the center vector and width vector of the Gaussian basis function in radial basis function (RBF) neural network. Then, based on the dynamics model of the robot manipulator, the modeling errors are approximated by RBF neural network and eliminated by sliding mode control (SMC), and the Lyapunov theorem is used to prove the stability and convergence of the control system. Finally, a two-joint robot manipulator is taken as the research objective and the simulation results show that IGA can significantly reduce the solution time on the basis of guaranteed accuracy and IGA-RBFNNSMC can make the trajectory tracking control accurate and more efficient, which proves the effectiveness of the proposed control method.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: International Journal of Computer Integrated Manufacturing
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.