Abstract
Strong viscous interaction and multiple flow regimes exist when vehicles fly at high altitude and high Mach number conditions. The Navier–Stokes(NS) solver is no longer applicable in the above situation. Instead, the direct simulation Monte Carlo (DSMC) method or Boltzmann model equation solvers are usually needed. However, they are computationally more expensive than the NS solver. Therefore, it is of great engineering value to establish the aerodynamic prediction model of vehicles at high altitude and high Mach number conditions. In this paper, the hypersonic aerodynamic characteristics of an X38-like vehicle in typical conditions from 70 km to 110 km are simulated using the unified gas kinetic scheme (UGKS), which is applicable for all flow regimes. The contributions of pressure and viscous stress on the force coefficients are analyzed. The viscous interaction parameters, Mach number, and angle of attack are used as independent variables, and the difference between the force coefficients calculated by UGKS and the Euler solver is used as a dependent variable to establish a nonlinear viscous interaction model between them in the range of 70–110 km. The evaluation of the model is completed using the correlation coefficient and the relative orthogonal distance. The conventional viscous interaction effect and rarefied effect are both taken into account in the model. The model can be used to quickly obtain the hypersonic aerodynamic characteristics of X38-like vehicle in a wide range, which is meaningful for engineering design.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.