Abstract

The dynamics of modulated waves in a nonlinear bi-inductance transmission line with dissipative elements are examined. We show the existence of two frequency modes and carry out intensive investigations on the low frequency mode. Thanks to the multiple scales method, the behavior of these waves is investigated and the dissipative effects are analyzed. It appears that the dissipation coefficient increases with the carrier wave frequency. In the continuous approximation, we derive that the propagation of these waves is governed by the complex Ginzburg–Landau equation instead of the Korteweg–de-Vries equation as previously established. Asymptotic studies of the dynamics of plane waves in the line reveal the existence of three additional regions in the dispersion curve where the modulational phenomenon is observed. In the low frequency mode, we demonstrate that the network allows the propagation of dark and bright solitons. Numerical findings are in perfect agreement with the analytical predictions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.