Abstract

By a means of a method based on the reductive perturbation method, we show that the amplitude of waves on the nonlinear electrical transmission lines (NLTLs) is described by the cubic-quintic complex Ginzburg-Landau (CGL) equation. Then, we revisit analytically and numerically the processes of modulational instability (MI). The evolution of dissipative modulated waves through the network is also examined, and we show that solitonlike excitations can be induced by MI. Analytical results, illustrating the nature of MI of plane-wave solution, are also found to be in good agreement with numerical findings.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call