Abstract

In this work, the dynamics of modulated waves in a modified Noguchi nonlinear electrical transmission line is studied with the contribution of second neighbors. It comes from this analysis that the line is governed by a dissipative nonlinear Schrodinger equation. One observes that the second neighbors counterbalance the effect of the linear capacitor CS in the frequency domains. The second neighbors well influence the line by increasing its bandwidth, its group velocity and the magnitude of the wave during its propagation. In the dispersion curve, we show that there exits a new region for the modulational instability/stability compared to the work of Pelap et al. (Phys. Rev. E 91, 022925 (2015)). The exactness of the analytical studies is accredited by numerical calculations. The most important feature of the new region, i.e. the second neighbors, is that the same frequency allows the use of either a bright soliton or a dark soliton depending on the choice of an appropriated wavelength.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call