Abstract

The absence of somatotopic sensory feedback limits the function of conventional prosthetic hands. In this study, we integrated a non-invasive sensory feedback system into a commercial Bebionic hand with new customized surface stimulation electrodes. Multiple modalities of tactile and hand aperture sensory information were conveyed to the amputee via the technique of evoked tactile sensation (ETS) elicited at projected finger map (PFM) of residual limb and an additional electrotactile stimulation in the ipsilateral upper arm. A previously developed anti-stimulus artifact module was used to remove the stimulus artifact from surface electromyographic (sEMG) signals, and the filtered sEMG envelops controlled the speed of open/close of the Bebionic hand. The Ag/AgCl surface stimulation electrode in 10-mm diameter was specially designed to fit the restricted PFM areas for stable perception. We evaluated the alternating-current (AC) impedance magnitude of this electrode stimulated over 12 hours. The perceptual and upper thresholds in pulse-width over 200 days at PFM areas were recorded to assess the stability of the non-invasive sensory neural interface. The efficacy of multi-modality feedback for identification of physical properties of objects was also assessed. Results showed that the AC impedance of customized surface stimulation electrode was stable over 12 hours of stimulation. The perceptual and upper thresholds were stable over 200 days. This non-invasive sensory feedback enabled a forearm amputee to identify the compliance and length of grasped objects with an accuracy of 100 %. Results illustrated that the multi-modality sensory feedback system provided stable and sufficient sensory information for perceptual discrimination of physical features of grasped objects. Clinical Relevance- This study demonstrated a promising and novel way to restore stable sensory feedback non-invasively for commercial hand prostheses.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.