Abstract

Tetragonal zinc chalcogenide monolayers (TZCM) are emerging as interesting electronic materials with a direct band gap and relatively high carrier mobility. In this work, we report a theoretical investigation of electronic transport properties and photoelectric response properties of TZCM with gold contacts by density functional theory (DFT) and non-equilibrium Green's function (NEGF) methods. When there is no gate voltage applied, the current increases nonlinearly as bias voltage increases. Among the four proposed devices, the Au(100)/ZnS/Au(100) device has the best electronic transport performance and is most sensitive to the adjustment of bias voltage and gate voltage. The photocurrent calculation results indicate that the low-frequency oscillatory photocurrent of the Au(100)/ZnSe/Au(100) device in the high photon energy region may have potential applications in ultraviolet light-emitting diodes. The Au(100)/Zn2SeS/Au(100) device has more stable photoelectric response and polarization sensitivity than the Au(100)/Zn2SSe/Au(100) device. The Au(100)/TZCM/Au(100) devices exhibit considerable photocurrent and good extinction ratios. This work could pave the way for the future application of TZCM in the field of optoelectronics and so on.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call