Abstract

The detection of elementary carriers in transport phenomena is one of the most important keys to understand nontrivial properties of strongly correlated quantum matter. Here, we propose a method to identify the tunneling current carrier in strongly interacting fermions from nonequilibrium noise in the Bardeen-Cooper-Schrieffer to Bose-Einstein condensate crossover. The noise-to-current ratio, the Fano factor, can be a crucial probe for the current carrier. Bringing strongly correlated fermions into contact with a dilute reservoir produces a tunneling current in between. The associated Fano factor increases from one to two as the interaction becomes stronger, reflecting the fact that the dominant conduction channel changes from the quasiparticle tunneling to the pair tunneling.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.