Abstract

Fermionic superfluidity requires the formation of particle pairs, the size of which varies from the femtometre scale in neutron stars and nuclei to the micrometre scale in conventional superconductors. Many properties of the superfluid depend on the pair size relative to the interparticle spacing. This is expressed in 'BCS-BEC crossover' theories, describing the crossover from a Bardeen-Cooper-Schrieffer (BCS)-type superfluid of loosely bound, large Cooper pairs to Bose-Einstein condensates (BECs) of tightly bound molecules. Such a crossover superfluid has been realized in ultracold atomic gases where high-temperature superfluidity has been observed. The microscopic properties of the fermion pairs can be probed using radio-frequency spectroscopy. However, previous work was difficult to interpret owing to strong final-state interactions that were not well understood. Here we realize a superfluid spin mixture in which such interactions have negligible influence and present fermion pair dissociation spectra that reveal the underlying pairing correlations. This allows us to determine that the spectroscopic pair size in the resonantly interacting gas is 20 per cent smaller than the interparticle spacing. These are the smallest pairs so far observed in fermionic superfluids, highlighting the importance of small fermion pairs for superfluidity at high critical temperatures. We have also identified transitions from fermion pairs to bound molecular states and to many-body bound states in the case of strong final-state interactions.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.