Abstract
ABSTRACT This paper demonstrates the usefulness of near-infrared (NIR) spectra and artificial neural network (ANN) in nondestructive quantitative analysis of pharmaceuticals. Real data sets from near-infrared reflectance spectra of analgini powder pharmaceutical were used to build up an artificial neural network to predict unknown samples. The parameters affecting the network were discussed. A new network evaluation criterion, the degree of approximation, was employed. The overfitting was discussed. Owing to the good nonlinear multivariate calibration nature of ANN, the predicted result was reliable and precise. The relative error of unknown samples was less than 2.5%
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.