Abstract

Zeroth-order (a.k.a, derivative-free) methods are a class of effective optimization methods for solving complex machine learning problems, where gradients of the objective functions are not available or computationally prohibitive. Recently, although many zeroth-order methods have been developed, these approaches still have two main drawbacks: 1) high function query complexity; 2) not being well suitable for solving the problems with complex penalties and constraints. To address these challenging drawbacks, in this paper, we propose a class of faster zeroth-order stochastic alternating direction method of multipliers (ADMM) methods (ZO-SPIDER-ADMM) to solve the nonconvex finite-sum problems with multiple nonsmooth penalties. Moreover, we prove that the ZO-SPIDER-ADMM methods can achieve a lower function query complexity of [Formula: see text] for finding an ϵ-stationary point, which improves the existing best nonconvex zeroth-order ADMM methods by a factor of [Formula: see text], where n and d denote the sample size and data dimension, respectively. At the same time, we propose a class of faster zeroth-order online ADMM methods (ZOO-ADMM+) to solve the nonconvex online problems with multiple nonsmooth penalties. We also prove that the proposed ZOO-ADMM+ methods achieve a lower function query complexity of [Formula: see text], which improves the existing best result by a factor of [Formula: see text]. Extensive experimental results on the structure adversarial attack on black-box deep neural networks demonstrate the efficiency of our new algorithms.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.