Abstract

Dynamic graphs arise in various real-world applications, and it is often welcomed to model the dynamics in continuous time domain for its flexibility. This paper aims to design an easy-to-use pipeline (EasyDGL which is also due to its implementation by DGL toolkit) composed of three modules with both strong fitting ability and interpretability, namely encoding, training and interpreting: i) a temporal point process (TPP) modulated attention architecture to endow the continuous-time resolution with the coupled spatiotemporal dynamics of the graph with edge-addition events; ii) a principled loss composed of task-agnostic TPP posterior maximization based on observed events, and a task-aware loss with a masking strategy over dynamic graph, where the tasks include dynamic link prediction, dynamic node classification and node traffic forecasting; iii) interpretation of the outputs (e.g., representations and predictions) with scalable perturbation-based quantitative analysis in the graph Fourier domain, which could comprehensively reflect the behavior of the learned model. Empirical results on public benchmarks show our superior performance for time-conditioned predictive tasks, and in particular EasyDGL can effectively quantify the predictive power of frequency content that a model learns from evolving graph data.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.