Abstract
In analogy with classical submanifold theory, we introduce morphisms of real metric calculi together with noncommutative embeddings. We show that basic concepts, such as the second fundamental form and the Weingarten map, translate into the noncommutative setting and, in particular, we prove a noncommutative analogue of Gauss’ equations for the curvature of a submanifold. Moreover, the mean curvature of an embedding is readily introduced, giving a natural definition of a noncommutative minimal embedding, and we illustrate the novel concepts by considering the noncommutative torus as a minimal surface in the noncommutative 3-sphere.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have