Abstract
As a first step toward developing a theory of noncommutative nonlinear elliptic partial differential equations, we analyze noncommutative analogues of Laplace’s equation and its variants (some of them nonlinear) over noncommutative tori. Along the way we prove noncommutative analogues of many results in classical analysis, such as Wiener’s Theorem on functions with absolutely convergent Fourier series, and standard existence and nonexistence theorems on elliptic functions. We show that many classical methods, including the maximum principle, the direct method of the calculus of variations, and the use of the Leray–Schauder Theorem, have analogues in the noncommutative setting.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have