Abstract

How to improve the reliability has been a challenging task for transient protection, which has been affected seriously by the fault initial angle (FIA) and transient resistance (TR). Based on support vector machine (SVM), a novel smart transient protection method is presented in this study, which protects a bus and two transmission lines connected to the bus. The method is based on the measurements from the two close-in ends of the two lines. Hilbert–Huang transform is used to extracting instantaneous amplitude from the measured currents. The fault area is determined from the two instantaneous amplitude-integral (IA) of the transient fault currents, the difference of the two IAs, FIA, and the TR. SVM is utilised to determine the fault area. Two IAIs, difference of IAs, FIA and TR are treated as the input to SVMs. Faults with different FIA and TR are treated as a different class of fault, respectively. Correspondingly, a different criterion of discrimination is automatically employed by SVMs for a different fault class. The influence of FIA and TR is eliminated significantly, and the reliability of protection is enhanced substantially. The performance of the method is tested using ATP/EMTP with satisfactory results.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.