Abstract

We investigate the effective long-range interactions between intruder particles immersed in a randomly driven granular fluid. The effective Casimir-like force between two intruders, induced by the fluctuations of the hydrodynamic fields, can change its sign when varying the control parameters: the volume fraction, the distance between the intruders, and the restitution coefficient. More interestingly, by inserting more intruders, we verify that the fluctuation-induced interaction is not pairwise additive. The simulation results are qualitatively consistent with the theoretical predictions based on mode coupling calculations. These results shed new light on the underlying mechanisms of collective behaviors in fluidized granular media.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.