Abstract

AbstractHigh‐performance non‐volatile memory elements based on carbon‐nanotube‐enabled vertical field‐effect transistors (CN‐VFETs) are demonstrated. A thin crosslinking polymer layer, benzocyclobutene (BCB), on top of the gate dielectric acts as the charge storage layer. This results in a large, fully gate sweep programmable, hysteresis in the cyclic transfer curves exhibiting on/off ratios >4 orders of magnitude. The carbon nanotube random network source electrode facilitates charge injection into the charge storage layer, realizing the strong memory effect without sacrificing mobility in the vertical channel. Given their intrinsically simple fabrication and compact size CN‐VFETs could provide a path to cost‐effective, high‐density organic memory devices.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.