Abstract

The combined Eulerian-Lagrangian formalism, developed in our previous work for studying the turn on regime of a one-dimensional diode, is extended for wider versatility and better precision in the study of the time dependent space charge limited electron flow with fixed injected current. An analytical analysis is supplemented with an approximate numerical scheme which appears to be sufficiently accurate to calculate the flow evolution until the process approaches stabilization or becomes unstable. This can be compared with properties of stationary flows and showed to be in a good agreement with them. When the stabilization is impossible, the ratio of anode to cathode currents is decreasing and thus the space charge is accumulated in the diode. We discuss the limitations of our approach and give some qualitative estimates for the flow parameters when stabilization is impossible.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.