Abstract
The image nonlocal self-similarity (NSS) prior refers to the fact that a local patch often has many nonlocal similar patches to it across the image and has been widely applied in many recently proposed machining learning algorithms for image processing. However, there is no theoretical analysis on its working principle in the literature. In this paper, we discover a potential causality between NSS and low-rank property of color images, which is also available to grey images. A new patch group based NSS prior scheme is proposed to learn explicit NSS models of natural color images. The numerical low-rank property of patched matrices is also rigorously proved. The NSS-based QMC algorithm computes an optimal low-rank approximation to the high-rank color image, resulting in high PSNR and SSIM measures and particularly the better visual quality. A new tensor NSS-based QMC method is also presented to solve the color video inpainting problem based on quaternion tensor representation. The numerical experiments on color images and videos indicate the advantages of NSS-based QMC over the state-of-the-art methods.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.