Abstract

Low-rank quaternion tensor completion method, a novel approach to recovery color videos and images, is proposed in this paper. We respectively reconstruct a color image and a color video as a quaternion matrix (second-order tensor) and a third-order quaternion tensor by encoding the red, green, and blue channel pixel values on the three imaginary parts of a quaternion. Different from some traditional models which treat color pixel as a scalar and represent color channels separately, whereas, during the quaternion-based reconstruction, it is significant that the inherent color structures of color images and color videos can be completely preserved. Under the definition of Tucker rank, the global low-rank prior to quaternion tensor is encoded as the nuclear norm of unfolding quaternion matrices. Then, by applying the ADMM framework, we provide the tensor completion algorithm for any order ( ≥ 2) quaternion tensors, which theoretically can be well used to recover missing entries of any multidimensional data with color structures. Simulation results for color videos and color images recovery show the superior performance and efficiency of the proposed method over some state-of-the-art existing ones.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.