Abstract
Flexible pressure sensors with high sensitivity and linearity are highly desirable for robot sensing and human physiological signal detection. However, the current strategies for stabilizing axial microstructures (e.g., micro-pyramids) are mainly susceptible to structural stiffening during compression, thereby limiting the realization of high sensitivity and linearity. Here, we report a bending-induced non-equilibrium compression process that effectively enhances the compressibility of microstructures, thereby crucially improving the efficiency of interfacial area growth of electric double layer (EDL). Based on this principle, we fabricate an iontronic flexible pressure sensor with vertical graphene (VG) array electrodes. Ultra-high sensitivity (185.09 kPa−1) and linearity (R2 = 0.9999) are realized over a wide pressure range (0.49 Pa–66.67 kPa). It also exhibits remarkable mechanical stability during compression and bending. The sensor is successfully employed in a robotic gripping task to recognize the targets of different materials and shapes based on a multilayer perception (MLP) neural network. It opens the door to realizing haptic sensing capabilities for robotic hands and prosthetic limbs.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have