Abstract
Application of hyperspectral imaging (HSI) and data analysis algorithms was investigated for early and non-destructive detection of Botrytis cinerea infection. Hyperspectral images were collected from laboratory-based contaminated and non-contaminated fruits at different day intervals. The spectral wavelengths of 450 nm to 900 nm were pretreated by applying moving window smoothing (MWS), standard normal variates (SNV), multiplicative scatter correction (MSC), Savitzky–Golay 1st derivative, and Savitzky–Golay 2nd derivative algorithms. In addition, three different wavelength selection algorithms, namely; competitive adaptive reweighted sampling (CARS), uninformative variable elimination (UVE), and successive projection algorithm (SPA), were executed on the spectra to invoke the most informative wavelengths. The linear discriminant analysis (LDA), developed with SNV-filtered spectral data, was the most accurate classifier to differentiate the contaminated and non-contaminated kiwifruits with accuracies of 96.67% and 96.00% in the cross-validation and evaluation stages, respectively. The system was able to detect infected samples before the appearance of disease symptoms. Results also showed that the gray-mold infection significantly influenced the kiwifruits’ firmness, soluble solid content (SSC), and titratable acidity (TA) attributes. Moreover, the Savitzky–Golay 1st derivative-CARS-PLSR model obtained the highest prediction rate for kiwifruit firmness, SSC, and TA with the determination coefficient (R2) values of 0.9879, 0.9644, 0.9797, respectively, in calibration stage. The corresponding cross-validation R2 values were equal to 0.9722, 0.9317, 0.9500 for firmness, SSC, and TA, respectively. HSI and chemometric analysis demonstrated a high potential for rapid and non-destructive assessments of fungal-infected kiwifruits during storage.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.